Rauf Aliev (rauf) wrote,
Rauf Aliev
rauf

Есть две интересные классические задачки про…

Есть две интересные классические задачки про вероятности и выбор.

[=Первая=] Есть два неразличимых конверта с деньгами. В одном сумма в два раза большая, чем во втором. Величина этой суммы неизвестна. Конверты дают двум игрокам. Каждый из них может открыть свой конверт. После этого игроки должны решить: стоит ли обменять свой конверт на чужой?

Оба игрока рассуждают следующим образом: «Я вижу в своём конверте сумму X. В чужом конверте равновероятно может находиться 2X или X/2. Поэтому, если я поменяю конверт, то у меня _в среднем_ будет (2X+X/2)/2 = (5/4)X, т.е. больше, чем сейчас. Значит обмен выгоден. Однако обмен не может быть выгоден обоим игрокам. Где в их рассуждениях кроется ошибка?

[=Вторая=] Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трех дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

Сколько копий было сломано в обсуждении этих задачек)


Subscribe
  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 0 comments